SPIT SBR14

Code 030750 (in bulk) / 030760 (in tube)

APPLICATION LIMIT

- (1) French designation (2) German designation
- (3) Designation according to European standard NF EN 10027-1

Ultimate tensile strength of base material (N/mm²)

CONTROL FIXING

Thickness of base material	H _{min} ⁽¹⁾ (mm)	H _{max} ⁽¹⁾ (mm)	
3 ≤ h < 6 mm ⁽²⁾	7	10.5	
h ≥ 6 mm	5	10.5	

- (1) Values obtained with 0.75 mm steel sheet.
- (2) French rules AT CSTB.

DESCRIPTION

Cladding panels / roofing

PROPERTIES MATERIAL

The SBR14 nails is composed of:

¬ Shank in carbon steel

- Ultimate tensile strength: 2300 N/mm²
- Yield strength: 1600 N/mm²
- Electrogalvanizing, min zinc coating 7 µm
- Hardness : 54 to 58 HRc

One steel washer

- Min zinc coating 8 μm
- Electrogalvanizing
- The plate washer developed for a good clamping of the plates to avoid damages when shooting.

¬ Kesternitch test, 2 cycles exposure

TOOLS

P230 - P525L

POWER SETTING

SPIT SBR14

ACCORDING FRENCH RULES (TECHNICAL APPROVAL ISSUE FROM CSTB, N° 5/04-1775) :

Thickness of base material S235 (E24) quality	Characteristic load ⁽¹⁾ (kN), for connection of one sheet with thickness 0,75 mm fuk > 400 N/mm² (S280GD) N _{rk}		
3 ≤ h < 6 mm	3		
h ≥ 6 mm	6		

⁽¹⁾ according to the standard NF P 84-206, ref. DTU 43.3

ACCORDING DIBT GERMAN APPROVAL N° Z-14.1-4:

- Base material:

Resistance of base material S235 (E24) and with a thickness higher than 6mm according to the field of application given in the first page.

¬ Sheetings and type of connections :

1 sheeting

2 Sheetings

2 sheetings

4 sheetings

Sheeting thickness (mm)	Characteristic loads [kN]		Design loads [kN]		Recommended laods [kN]		Connection
	Shear	Tensile	Shear	Tensile	Shear	Tensile	type
	V_{Rk}	N _{Rk}	V _{Rd}	N _{Rd}	V _{Rec}	N _{Rec}	
0.63	3.4	2.4	2.5	1.8	1.7	1.2	ABGD
0.75	4.4	4.0	3.3	3.0	2.2	2.0	ABGD
0.88	5.6	5.2	4.2	3.9	2.8	2.6	ABGD
1.00	6.8	6.4	5.1	4.8	3.4	3.2	ABGD
1.13	8.2	7.8	6.1	5.9	4.1	3.9	A
1.25	9.4	9.4	7.1	7.1	4.7	4.7	A
1.50	9.4	9.4	7.1	7.1	4.7	4.7	A
1.75	9.4	9.4	7.1	7.1	4.7	4.7	A
2.00	9.4	9.4	7.1	7.1	4.7	4.7	A
2.50	9.4	9.4	7.1	7.1	4.7	4.7	A

 $V_{Rd} = V_{Rk} / \gamma_M$: the design load is calculated from the characteristic load and a partial safety factor $\gamma_M = 1.33$.

 $N_{Rd} = \alpha_{cycl} \times N_{Rk} / \gamma_M$: the design load is calculated from the characteristic load and a partial safety factor $\gamma_M = 1.33$ and $\alpha_{cycl} = 1$.

For the calculation of the recommended load, we applied the partial safety factor $\gamma_F = 1.5$.